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Entropy of electromagnetic polarization

Y. Zimmels
Environmental and Water Resources Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

~Received 17 October 2001; published 7 March 2002!

The entropy of electromagnetic polarization is considered in this paper. It is shown that unless the nonfield
entropy, and not the total entropy, is used as the independent variable in the expression for the internal energy,
the first law is violated and the meaning of heat flow, as given by the second law, is contradicted. The total
entropy and its field and nonfield components are shown to be state functions. The field entropy comprises
contributions from the field generated by the contents of the system and stored within as well as outside its
boundaries. The contribution of the field stored outside the system boundaries is derived and demonstrated for
the case of a uniformly polarized sphere. Finally, expressions are derived for field entropies and entropy
densities, in composite systems, using the concept of interaction entropy. The results are shown to be funda-
mentally different compared to those used in the current literature.
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THEORY

The meaning of entropy in the presence of quasist
electromagnetic fields requires clarification as it is often m
interpreted in expressions for the internal energy in the p
ence of fields. Furthermore, no account is made for the ef
of the field, generated by the contents of a system outsid
physical boundaries, on this entropy~Refs. @1–3#!. The
meaning of entropy in the presence of electromagnetic fie
can be elucidated by realizing the symmetry between
energy and entropy functions, e.g., with respect to their be
a state function and the fundamental sets of indepen
variables used to characterize them. The internal energyÛ in
the presence of a magnetic field is given by~Ref. @4#!

Û5U1UM , U5U~S,V,N,B50!,

UM5UM~S,V,N,B!, ~1!

whereU and UM are components of the internal energyÛ

5Û(S,V,N,B) due to nonfield variables and due to the pre
ence of the field, respectively, andUM(B50)50 must hold.
Note that by virtue of U5U(S,V,N,B50), UM

5UM(U,B), and hence alsoÛ5Û(U,B), are equivalent to
UM5UM(S,V,N,B), andÛ5Û(S,V,N,B), respectively. In
this presentation,U being independent ofB, agrees with its
definition as a nonfield independent variable. This varia
determines, together withB, the energyUM that is stored
in the field. The symmetry between the energy and entr
representations suggests that the counterpart ofUM
5UM(U,B) in the energy representation, can beSM
5SM(S,B) in the entropy representation, so thatSM and S
stand for field and nonfield entropies, respectively. The
S,V,N,B consists of four independent variables: entro
volume, mass, and induction of the field, respectively. AsS is
~by definition! independent ofB, it has the clear meaning o
field independent, or alternatively nonfield entropy~in agree-
ment with the above entropy representation!. Consequently,
the meaning of entropy in
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dÛ5T̂ dS2 P̂ dV1 ẑ dN1E
V8

H•dB dV ~2!

is not total entropy~Ŝ, which is the counterpart ofÛ! but the
field independent or nonfield entropy. Note that hereT̂, P̂, ẑ,
H, andV8 denote the temperature, pressure, chemical po
tial, field strength, and volume~usually all space!, in which
B exists due to the contents ofV.

Interpretation ofS @in Eq. ~2!# as the total entropy contra
dicts the definition ofT̂ dS as heatdQ̂ that flows across the
system boundaries, as well as the first law. SupposeS is
defined asS5S(B50)1SM , whereS(B50) andSM denote
the nonfield entropy and field entropy, respectively. Wh
the field is absentSM50 so thatS5S(B50). As SM is
generated by action at a distance,dSM and hence alsoT̂ dS
does not vanish in adiabatic magnetization@e.g., when no
heat is allowed to flow across the system boundaries
dS(B50)50#. Consequently,dQ̂ ~being in this case equa
to T̂ dSM! does not vanish contrary to the process being
fined as adiabatic. It follows that, in this case, the process
be defined as being adiabatic only with respect toS(B50),
but not with respect toSM . Furthermore, in adiabatic mag
netization@fixed S(B50)# at fixedV andN, the only contri-
bution to thedÛ is from the magnetic work term. Hence, b
virtue of the first lawdÛ5*V8H•dB dV, at fixedS, V, N.
The extra term due to the field entropyT̂ dSM , being unac-
counted for, violates the first law. Consequently, the entro
S in Eq. ~2! must stand for the nonfield component of th
total entropy, and the magnetic entropy must arise from
magnetic work term. This agrees with the requirement
independence ofS from the fieldB. In contrast, the entropy
SM due to the magnetic field must be a function ofB.

The fundamental role of the nonfield entropy can be de
onstrated by the effect of the heat delivered by a nonm
netic heat source to a magnetized system at fixedV, N, and
B. Note that in this work, ‘‘fixedV’’ implies that V is fixed
with respect to size, shape, position, and orientation,
‘‘fixed B’’ also implies that no work is delivered by the cu
©2002 The American Physical Society46-1
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rent sources ofB to the system. The heatdQ̂ is delivered
~across the system boundaries! by the heat source at the equ
librium temperatureT̂. By virtue of the second law

dQ̂5T̂ dS, ~3!

wheredSdenotes the entropy of the system.
Next we seek to establish the meaning ofS. First we

assume that it stands for the total entropy of the system.
heat induces a simultaneous change in nonfield and field
ergies. At fixedV, N, andB, the change in field energy arise
due to a change in permeability. Hence

dQ̂5dQ1dQM fixed V,N,B, ~4!

wheredQ anddQM denote the components of the heat th
induces~at the equilibrium temperatureT̂! the change in the
nonfield and field energies, respectively. By virtue of t
second law,dSmust also have similar components. Henc

dS5dS~B50!1dSM , ~5!

dQ5T̂dS, dQM5T̂dSM . ~6!

Equation~6! states that the change in the field energy~e.g.,
due todQM! is a function ofSM and not ofS(B50). This
contradicts the fact that at fixedV,N,B, the field energy is a
function of the system’s permeability. At fixedV, N, andB,
the permeability is a function of temperature and hence a
of S(B50). Consequently,S cannot stand for the total en
tropy Ŝ and must represent the nonfield entropyS(B50), as
the fundamental entropy variable. Furthermore, followi
the choice ofS as the independent variable, the transform
tion of heat into field energy must be expressible in terms
the field-dependent temperatureT̂. Recall that atB50, the
heat flow dQ5T dS is expressed in terms ofT
5T(S,V,N,B50) and the independent variableS. This
gives

dQ̂5T̂ dS, T̂5T1TM , ~7!

dQ5T dS, dQM1TMdS, ~8!

where by virtue of Eq. ~1!, T5(]U/]S)V,N and TM
5(]UM /]S)V,N,B are defined as the nonfield and field com
ponents~Ref. @4#! of the temperatureT̂5(]Û/]S)V,N,B .

This formulation agrees with the fact thatS and SM are
related as cause and effect variables. A change inSproduces
~at fixed B! a change in permeabilitym, and consequently
also in the field strengthH5B/m. These changes effect th
change inSM5SM(S,B). The change inSM does not follow
from the flow of magnetic entropy, but rather as a result
local changes induced by the change inS. Furthermore, at
fixed V, N, B, dQ5dU, dQM5dUM , and dQ̂5dÛ.
Hence, Eq.~4! agrees with Eq.~1!, as expected.

The symmetry betweenU and S means that when the
former is expressed asU5U(S,V,N), the latter is express
ible asS5S(U,V,N). Similarly, in the presence of the fiel
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Û5Û(U,B)5(S,V,N,B) calls for Ŝ5Ŝ(S,B)
5Ŝ(U,V,N,B). Note that, in the energy representation, u
ing the setU,B, in conjunction withU5U(S,V,N), gives
the fundamental setS,V,N,B. In the entropy representation
using the setS,B in conjunction withS5S(U,V,N) gives
the fundamental setU,V,N,B. As indicated previously, the
symmetry betweenÛ and Ŝ requires that the counterpart o
Eq. ~1! be as follows:

Ŝ5S1SM , S5S~U,V,N,B50!, SM5SM~U,V,N,B!.
~9!

In Eq. ~9!, Ŝ, S, andSM must each be a state function, an
SM(B50)50 must hold. This conforms with the fact that b
definition bothŜ and S are state functions so thatSM must
also possess this property. Thus, as expected, the setŜ, S,
andSM ~of entropy variables! is symmetrical to the setÛ, U,
and UM ~of energy variables! regarding the fact that eac
comprises three state functions. There is a fundamental
ference between the wayS and SM change. The nonfield
entropy is transferable through contact from one system
another and as such, must flow across physical bounda
In contrast,SM ~which arises due to flow of electromagnet
power across the system boundary that constitutes action
distance! relates to local properties, e.g., as dictated by
field B at the level ofS, V, andN that characterize the sys
tem, or elses5S/V and r5N/V that apply at each point
Note that the same observation applies to the difference
tweenU and UM , i.e., a change inU involves contact and
flow of energy across boundaries, whereas a change inUM
can occur solely due to action at a distance.

Evaluation ofUM can be done as follows: The magnet
internal energyUM of a system is defined as

UM5E
V8
E

0

B
H•dBdV2UMa , fixed S,V,N,H5B/m,

~10!

UMa5E
V8
E

0

Ba
~H•dB!adV, ~11!

whereUM andUMa denote the magnetic energy stored inV8
due to the same intensity~e.g., current levels! of the field
sources in the presence and the absence of the system
subscripta denotes absence of the system. Imposition
fixed S, V, N means that the process is adiabatic, e.g., w
respect to the nonfield entropy, and the system is isola
with respect to mechanical interactions and flow~e.g.,
through contact! of heat and mass across its fixed boun
aries. However, as already mentioned, this does not prec
a change inSM that results from long-range field interac
tions. At fixedB, V, andN, UM is a function ofm, which in
turn is a sole function ofS. Under these conditionsT
5T(S) so thatS5S(T), and hencem5m@S(T)#5m(T) can
be safely used. This gives
6-2
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~]UM /]T!V,N,B5E
V8
E

0

BS ]H

]T D
V,N,B

•dBdV

2~]UMa /]T!V,N,B , H5B/m.

~12!

In V, ]H/]T52(B/m2)]m/]T. OutsideV, in the region
V82V, H and hence]H/]T can be a function of two per
meabilities~e.g., ofV andV82V!. This arises from the so
lution of the field equations. These solutions give, in gene
H as a function of the permeabilities prevailing both inV and
V82V ~Ref. @5#! ~see example of a sphere in a uniform fie
below!. Hence, a change inm due to a change inT in V, can
changeH in V82V, with significant contribution to the in-
tegral of Eq.~12! from both regions.

Subtraction ofTS from both sides of Eq.~1! followed by
differentiation gives

d~Û2TS!52S dT2p dV1z dN1dUM . ~13!

At fixed V,N,B, UM5UM(S), T5T(S), dT5(]T/]S)dS.
Hence,

dUM5S ]UM

]S DdS5S ]UM

]T D S ]T

]SDdS5S ]UM

]T DdT,

so that, TM5(]UM /]S)V,N,B and SM52(]UM /]T)V,N,B
@see Eq.~14!#. Here SM and TM are the magnetic compo
nents ofŜ andT̂, respectively. Using Eqs.~12! and~13!, and
rearranging gives

d~Û2TS!52~S1SM !dT,

SM52~]UM /]T!V,N,B , fixed V,N,B, ~14!

SM52E
V8
E

0

BS ]H

]T D
V,N,B

•dBdV1SMa , fixed V,N,B,

~15!

where SMa denotes the value ofSM in the absence of the
system.

It follows that, unless theH field is confined toV and
vanishes elsewhere, the contribution of the magnetic fi
which is generated by a system, to its magnetic entro
comes from all space. This fundamental property ofSM has
not been addressed as yet. If theH field vanishes outsideV,
i.e., in V82V, then Eq.~15! can be expressed as

SM5E
V
E

0

B B•dB

m2 S ]m

]T D
V,N,B

dV1SMa ,

fixed V,N,B, H50 outside V. ~16!

Note that here, use was made ofB independent ofT, so that

]H/]T5]~B/m!/]T52~B/m2!~]m/]T!.

The form of Eq.~16! holds in certain cases, where the co
tribution of matter outsideV, e.g., inV82V, can be incor-
03614
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porated into a thermodynamic permeability. For example
the case of a linear sphere in a uniform magnetic field~Ref.
@4#!, the thermodynamic permeability is defined by

ms5
1
9 m1~m1 /m222m2 /m111!. ~17!

Equations~10! ~with V8 replaced byV! and~16! can be used
for this case oncem is replaced byms . The result is thatSM
depends on bothm1 and m2 , which denote the magneti
permeabilities of the contents of the sphere and of the sp
surrounding it, respectively. If the reference entropySMa is
assumed to vanish, the material is linear and theH field is
uniform inV, but vanishes elsewhere, then using the fact t
in this casem is independent of the field, Eqs.~15! and~16!
reduce to the well-known form ofSM ~Refs.@1,4#!

SM5
1

2
VH2S ]m

]T D . ~18!

In contrast, the field of a uniformly magnetized sphere
volumeV does not vanish outside its boundaries, so tha
this case

UM5 1
2 VmsH1

25 1
18 VB2~1/m222m2 /m1

211/m1!,

H15B/m1 , ~19!

SM52S ]UM

]T D
V,N,B

5
1

18
VH1

2F S m1
2

m2
2 12D ]m2

]T

2S 4m2

m1
21D ]m1

]T G , ~20!

whereH1 is the field insideV,

H15
3m2

m112m2
H0 , ~21!

andH0 is the uniform field that gives rise toH1 . Note that
for a sphere in free space,m25m0 and the first term in
brackets on the right-hand side of Eq.~20! vanishes. How-
ever, this does not change the fact that there is a contribu
to the field entropy of the sphere by the surrounding f
space~which is energized by the content of the sphere!. Fur-
thermore, ifm2 /m1→0, thenH1→0, but neither the energy

( 1
2 VmsH1

2) nor the field entropy of the sphere vanish. In th
case Eqs.~19! and ~20! give

UM5 1
2 Vm2H0

2, m2 /m1→0, ~22!

SM5 1
2 VH0

2~]m2 /]T!, m2 /m1→0. ~23!

Comparing Eqs.~18! and~23! shows that in the two extrem
cases, the magnetic entropy of the sphere has the same
apart from using the field and permeability that character
the space in which it is stored. Furthermore, as the fieldH1
insideV is a function of bothm1 andm2 , it is impossible to
express the field energyUM and entropySM by variables that
pertain exclusively to the contents ofV. This is in agreement
6-3
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with the fact that bothUM andSM have contributions from
the field, generated by the contents ofV over all space.

Note that accounting for the field entropy of a finite sy
tem, that is stored over all space, is important regarding
pressions of probability density of fluctuations in the pro
imity of equilibrium. For further details, see the recent wo
on fluctuations in the presence of the field by Dumitru a
Boer @6#.

The analysis presented hitherto applies also to electric
larization, once the magnetic variablesB, H, andm are re-
placed byD, E, and«, which denote electric displacemen
electric field intensity, and permittivity, respectively. In wh
follows the entropy of a composite system is consider
Hitherto, the analysis was restricted to single systems. N
the case of composite systems, comprising interacting s
systems, is considered.

A composite system comprises subsystems that are c
acterized by their dimensions and position in space. T
states are defined with respect to the extent of interac
between the subsystems. In the first state, the subsystem
placed far apart so as to warrant the assumption that t
mutual interactions vanish. In this state the energy of e
system is defined as its own, or self-energy. The second
is characterized by the existence of significant interacti
between part or all of the subsystems. In this category, s
systems that are in physical contact, and share com
boundaries, are included. Let the field entropy of a compo
system, comprising two subsystems, in the first and sec
state, be denoted bySM8 andSM , respectively,

SM8 5SM18 1SM28 , ~24!

SM5SM11SM2 , ~25!

where subscripts 1 and 2 indicate that the variable pertain
the respective subsystems, and the prime refers to the
state.

The interaction entropySM12 prevailing in the second
state is defined by

SM125SM2SM8 , ~26!

where use was made of the fact that in the first ‘‘prime
state, the interaction between subsystems 1 and 2 vanis

In the second state, the interaction energy is shared
tween subsystems 1 and 2. Hence,

SM15SM18 1 1
2 SM125SM18 1 1

2 ~SM2SM8 !, ~27!

SM25SM28 1 1
2 SM215SM28 1 1

2 ~SM2SM8 !, ~28!

whereSM125SM21.
The variablesSM18 , SM28 , SM , andSM8 can be evaluated

in conjunction with Eq.~15!, once the field equations in th
03614
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two states are solved. Equation~15! cannot be used to evalu
ateSM1 andSM2 directly, as they are dependent on the int
action energy that is shared between the two subsyste
This agrees with the fact that Eq.~15! accounts for energy
that pertains to a system, or subsystem, which is identifie
its exclusive source.

Equation ~27! can be used to define~for subsystem 1!
intensive, e.g., per unit volume, entropy variables as follow

sM15sM18 1 1
2 sM125sM1i8 1sM1o8 1 1

2 sM12, ~29!

wheresM15SM1 /V, sM18 5SM18 /V, sM125SM12/V, and sub-
scripts i and o denote the part ofSM18 stored within, and
outside, the boundaries of the system, respectively.

Equation ~29! shows that unless the contributions fro
interactions and field entropy stored outside the sys
boundaries vanish, the intensive entropy density differs fr
the conventional form of classical thermodynamics. It is on
when sM1o8 5sM1250 that sM15sM18 5sM1i8 conforms with
classical nonfield thermodynamics. As Eq.~29! is general in
nature, it applies to the entropy of systems, or subsystem
states of interaction or noninteraction. IfsM1250, thensM1

5sM18 5sM1i8 1sM1o8 and the entropy density, e.g., per un
volume V of the system, includes a contribution from th
field outside its physical boundaries. This is a unique pr
erty of the field entropy that does not exist in its nonfie
counterpart.

SUMMARY AND CONCLUSIONS

The entropy in the termT̂ dS that stands for the hea
delivered to the system across its boundaries is the non
component of the total entropy. The definition ofS as the
total entropy, inT̂ dS, contradicts the meaning ofdQ̂ as
given by the second law, and violates the first law. As ad
batic magnetization relates to a process whereby a syste
magnetized while being thermally insulated, it must be d
fined as a process at fixedSand not at fixed total entropyŜ.
Contrary to the case where polarization is absent, quasis
adiabatic polarization is not isentropic with respect to t
total entropyŜ. The self-entropy of a polarized system ca
be stored inside as well as outside its physical boundar
This entropy is a consequence of the field generated by
contents of the system, irrespective of its storage be
within or outside the system.

The entropy of a system consists of self-entropy and h
the interaction entropy with other systems. Consequently,
entropy density, e.g., per unit volume of the systems, co
prises self and interaction parts, which account for the eff
of the field energy stored beyond the system boundaries.
is a unique property, which is imparted to polarizable s
tems by the presence of polarization fields.
6-4
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