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Entropy of electromagnetic polarization
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The entropy of electromagnetic polarization is considered in this paper. It is shown that unless the nonfield
entropy, and not the total entropy, is used as the independent variable in the expression for the internal energy,
the first law is violated and the meaning of heat flow, as given by the second law, is contradicted. The total
entropy and its field and nonfield components are shown to be state functions. The field entropy comprises
contributions from the field generated by the contents of the system and stored within as well as outside its
boundaries. The contribution of the field stored outside the system boundaries is derived and demonstrated for
the case of a uniformly polarized sphere. Finally, expressions are derived for field entropies and entropy
densities, in composite systems, using the concept of interaction entropy. The results are shown to be funda-
mentally different compared to those used in the current literature.
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THEORY o R R
dU=TdS—PdV+§dN+J H-dBdV (2
. . . . v’

The meaning of entropy in the presence of quasistatic
electromagnetic fields requires clarification as it is often mis-
interpreted in expressions for the internal energy in the Presy not total entropyS, which is the counterpart dJ) but the
ence of fields. Furthermore, no account is made for the effect . ' . A A

eld independent or nonfield entropy. Note that heré, ¢,

of the field, generated by the contents of a system outside i 5 ; )
, andV’ denote the temperature, pressure, chemical poten-

physical boundaries, on this entrogfrRefs. [1-3]). The i . )
meaning of entropy in the presence of electromagnetic field al, f'eld strength, and volumgusually all spack in which
exists due to the contents Wf.

can be elucidated by realizing the symmetry between th . Sl h |
energy and entropy functions, e.g., with respect to their being Nterpretation ofS{in Eq. (2)] as the total entropy contra-

a state function and the fundamental sets of independesiicts the definition off dSas heatlQ that flows across the
variables used to characterize them. The internal erigrgy ~ SYStem boundaries, as well as the first law. Suppse

s e defined ass=S(B=0) + S,,, whereS(B=0) andS,, denote
the presence of a magnetic field is given (Ref. [4 M M
P g g 4D the nonfield entropy and field entropy, respectively. When

the field is absenS,=0 so thatS=S(B=0). As S, is
generated by action at a distand,, and hence alsd dS
does not vanish in adiabatic magnetizati@ng., when no
heat is allowed to flow across the system boundaries and
dS(B=0)=0]. Consequentlde (being in this case equal
whereU and Uy, are components of the internal enefdy  to TdSy) does not vanish contrary to the process being de-
=U(S,V,N,B) due to nonfield variables and due to the pres-fined as adiabatic. It follows that, in this case, the process can

ence of the field, respectively, att},(B=0)=0 must hold. be defined as being adiabatic only with respecE{B=0),
Note that by virtue of U=U(S,V,N,B=0), Uy but not with respect t&y, . Furthermore, in adiabatic mag-

~Uy(U,B), and hence alstl=0(U,B), are equivalent to netization[fixeg S(B=0)] at fixedV andN, the only contri-
Uy =Uy(S,V,N,B) andU:U(S V,N,B), respectively. In bution to thedU is from the magnetic work term. Hence, by
this presentationl) being independent d8, agrees with its  Virtue of the first lawdU= f\,H-dBdV, at fixedS V, N.
definition as a nonfield independent variable. This variableThe extra term due to the field entropydS,,, being unac-

U=U+Uy,, U=U(SV,N,B=0),

UM:UM(S,V,N,B), (1)

determines, together witB, the energyU,, that is stored

counted for, violates the first law. Consequently, the entropy

in the field. The symmetry between the energy and entropy in Eq. (2) must stand for the nonfield component of the

representations suggests that the counterpart Ugf
=Uu(U,B) in the energy representation, can &,
=Sy (S,B) in the entropy representation, so ti&} and S

total entropy, and the magnetic entropy must arise from the
magnetic work term. This agrees with the requirement of
independence o from the fieldB. In contrast, the entropy

stand for field and nonfield entropies, respectively. The se§,, due to the magnetic field must be a functionBf

S,V,N,B consists of four independent variables: entropy,
volume, mass, and induction of the field, respectivelySAs
(by definition) independent oB, it has the clear meaning of
field independent, or alternatively nonfield entrapyagree-
ment with the above entropy representaticbonsequently,
the meaning of entropy in
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The fundamental role of the nonfield entropy can be dem-
onstrated by the effect of the heat delivered by a nonmag-
netic heat source to a magnetized system at fixedll, and
B. Note that in this work, “fixedv” implies that V is fixed
with respect to size, shape, position, and orientation, and
“fixed B” also implies that no work is delivered by the cur-
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rent sources oB to the system. The heaQ is delivered U=U0(U,B)=(S,V,N,B) calls for S=5(S,B)

(across the system boundaypiby the heat source at the equi- =3(U,V,N,B). Note that, in the energy representation, us-

librium temperaturel. By virtue of the second law ing the setU,B, in conjunction withU=U(S,V,N), gives
o the fundamental se3,V,N,B. In the entropy representation,
dQ=TdS (3)  using the seS,B in conjunction withS=S(U,V,N) gives

the fundamental sdt/,V,N,B. As indicated previously, the

symmetry betweel) andS requires that the counterpart of
Iéq. (1) be as follows:

wheredS denotes the entropy of the system.

Next we seek to establish the meaning ®f First we
assume that it stands for the total entropy of the system. Th
heat induces a simultaneous change in nonfield and field en-
ergies. At fixedV, N, andB, the change in field energy arises S=S+Sy,, S=SU,V,N,B=0), Sy=Sy(U,V,N,B).
due to a change in permeability. Hence 9

dQ=dQ+dQy fixed V,N,B, @ n Eq.(9), S, S andSy must each be a state function, and

wheredQ anddQ,, denote the components of the heat thatj""f(_B_:_ O)EOr?jUSt zold. This cor}form§ with th(:]fact that by
induces(at the equilibrium temperatuf®) the change in the efinition bot S_an Sare state functions so tha, [nust
nonfield and field energies, respectively. By virtue of the@lSO possess this property. Thus, as expected, th&, sgt
second lawdSmust also have similar components. Hence, andSy, (of entropy variablesis symmetrical to the séd, U,
and U,, (of energy variablesregarding the fact that each

dS=dSB=0)+dSy, (5  comprises three state functions. There is a fundamental dif-
ference between the wa$ and S, change. The nonfield
dQ=TdS, dQu=TdSy. (6) entropy is transferable through contact from one system to
another and as such, must flow across physical boundaries.
Equation(6) states that the change in the field enefgyy.,  In contrast,S,, (which arises due to flow of electromagnetic

due todQy) is a function ofSy and not ofS(B=0). This  power across the system boundary that constitutes action at a
contradicts the fact that at fixed,N,B, the field energy is a distance relates to local properties, e.g., as dictated by the
function of the system’s permeability. At fixed, N, andB, field B at the level ofS, V, andN that characterize the sys-
the permeability is a function of temperature and hence alstem, or elses=S/V and p=N/V that apply at each point.

of S(B=0). ConsequentlyS cannot stand for the total en- Note that the same observation applies to the difference be-
tropy S and must represent the nonfield entr&B=0), as tweenU andU), i.e., a change iiJ involves contact and

the fundamental entropy variable. Furthermore, followingflow of energy across boundaries, whereas a chandé,in

the choice ofS as the independent variable, the transforma-<an occur solely due to action at a distance.

tion of heat into field energy must be expressible in terms of Evaluation ofUy can be done as follows: The magnetic

the field-dependent temperatife Recall that aB=0, the  Internal energyy, of a system is defined as
heat flow dQ=TdS is expressed in terms ofT

=T(S,V,N,B=0) and the independent variabl& This B )
gives U= y 0H~dB§V—UMa, fixed S,V,N,H=B/pu,
A s N (10
dQ=TdS T=T+Ty, (7)
Ba
dQ=TdS dQu+TywdS ) UMa:f J (H-dB),8V, (11)
v'Jo

where by virtue of Eq.(1), T=(dU/dS)y, and Ty

=(dUy/9S)y n g are defined as theAnonﬁAeId and field Com'whereUM andU,,, denote the magnetic energy storedvin
ponents(Ref. [4]) of the temperatur@ = (dU/dS)y - due to the same intensitie.g., current levelsof the field

This formulation agrees with the fact th&tand Sy are  sources in the presence and the absence of the system, and
related as cause and effect variables. A changgdroduces  sypscripta denotes absence of the system. Imposition of
(at fixed B) a change in permeability., and consequently, fixed S, VV, N means that the process is adiabatic, e.g., with
also in the field strengthi=B/u. These changes effect the respect to the nonfield entropy, and the system is isolated
change inSy =Sy (S,B). The change By does not follow  wijth respect to mechanical interactions and flae.g.,
from the flow of magnetic entropy, but rather as a result ofthrough contagtof heat and mass across its fixed bound-
local changes induced by the changeSnFurthermore, at  aries. However, as already mentioned, this does not preclude
fixed V, N, B, dQ=dU, dQy=dU,,, and dQ=dU. a change inSy, that results from long-range field interac-
Hence, Eq(4) agrees with Eq(1), as expected. tions. At fixedB, V, andN, U, is a function ofu, which in

The symmetry betweeld and S means that when the turn is a sole function ofS Under these conditiong
former is expressed dd=U(S,V,N), the latter is express- =T(S) so thatS=S(T), and hencer= u[S(T)]=u(T) can
ible asS=S(U,V,N). Similarly, in the presence of the field be safely used. This gives
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B/ 9H porated into a thermodynamic permeability. For example, in
(ﬁUM/ﬁT)v,N,B=J f (a_T) -dBé&V the case of a linear sphere in a uniform magnetic figldf.
Vo ViN,B [4]), the thermodynamic permeability is defined by
—(dUpaloT , H=Bl/pu.
(WwmalTv.ne H 1) ps=5pa(pal o= 2ppl pat1). (17)

Equationg10) (with V' replaced by/) and(16) can be used
In V, H/dT=—(B/u?)duldT. OutsideV, in the region for this case once is replaced byu. The result is thagy,
V'—=V, H and hence’H/JT can be a function of two per- depends on both:; and u,, which denote the magnetic
meabilities(e.g., of V. andV’ —V). This arises from the so- permeabilities of the contents of the sphere and of the space
lution of the field equations. These solutions give, in generalsurrounding it, respectively. If the reference entr@y, is
H as a function of the permeabilities prevailing botMimnd  assumed to vanish, the material is linear and khéeld is
V' -V (Ref.[5]) (see example of a sphere in a uniform field uniform inV, but vanishes elsewhere, then using the fact that
below). Hence, a change in due to a change il in V, can  in this caseu is independent of the field, Eq&L5) and (16)
changeH in V' -V, with significant contribution to the in- reduce to the well-known form o, (Refs.[1,4])
tegral of Eq.(12) from both regions.

Subtraction ofTSfrom both sides of Eq(1) followed by
differentiation gives

1 iy
SMZEVHZ(E . (18)

dU0-T9=-5S dT-p dV+dN+dUy,. (13 In contrast, the field of a uniformly magnetized sphere of

] volumeV does not vanish outside its boundaries, so that in
At fixed V,N,B, UM:UM(S), T:T(S), dT=(0”T/(9S)dS this case

Hence,
Un=3VuH?=5VB2(Uuy—2u/ u2+ 1uy),
iU _(aUM>d _(&UM &T) _(aUM)dT M~ 2V MsH1= T8 (Upo=2pp1 3 1)
M™los |77\ aT Jlas) T T aT ’ Hy=B/u,, (19
SO that, TM:((?UM/&S)V,N,B and SM:_((S)UM/(?T)V,N,B &U 1 /J«Z aM
[see Eq.(14)]. Here S, and Ty, are the magnetic compo- SM:—( aTM) :EVHf —;+2 a_TZ
nents ofS and T, respectively. Using Eq$12) and(13), and V\N.B K2
rearranging gives 4 P
: () 20
d(U—-T9=—(S+Sy,)dT, M1 J

Su=—(dUyn/dT)yng, fixed V,N,B, (14) whereH; is the field insideV,

3
H. = M2

-2y, 21)
Yopat2u, ° (

B/ gH '
SM:—J ’f T -dB&V+Sy,, fixed V,N,B,
viJo V,N,B

(15  andH, is the uniform field that gives rise td,. Note that
i for a sphere in free spacey,=ugy and the first term in
where Sy, denotes the value dBy in the absence of the p4ckets on the right-hand side of BQO) vanishes. How-
system. o , ever, this does not change the fact that there is a contribution
It follows that, unless thed field is confined toV and (g the field entropy of the sphere by the surrounding free
vanishes elsewhere, the contribution of the magnetic f'eldspace(which is energized by the content of the spheFeair-
which is generated by a system, to its magnetic e”tmpythermore, ifu,/ wy—0, thenH;—0, but neither the energy

comes from all space. This fundamental propertysgfhas 1 2 , . .
not been addressed as yet. If tHdield vanishes outsid¥, (2VasH1) nor the field entropy of the sphere vanish. In this
case Eqgs(19) and(20) give

i.e., inV'—V, then Eq.(15) can be expressed as

—Mr (3_T dV+SMa,

jJBBdB(a,u) Um=35VuoHG,  po/py—0, (22)
SM:
vJo V.N,B

Su=3VH§(du2/dT), palus—0. (29

fixed V.N.B, H=0 outsideV. (16) Comparing Eqgs(18) and(23) shows that in the two extreme

cases, the magnetic entropy of the sphere has the same form

apart from using the field and permeability that characterize
AHIIT=0(Bl w)l dT=— (Bl w?)(apul 9T). the space in which it is stored. Furthermore, as the fi¢/d

insideV is a function of bothu,; and u,, it is impossible to
The form of Eqg.(16) holds in certain cases, where the con-express the field enerdy,, and entropys, by variables that
tribution of matter outsidé/, e.g., inV’'—V, can be incor- pertain exclusively to the contents \gf This is in agreement

Note that here, use was madeBindependent off, so that
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with the fact that botiJ,, and Sy have contributions from two states are solved. Equati¢tb) cannot be used to evalu-

the field, generated by the contents\obver all space. ateS,,; andS,,, directly, as they are dependent on the inter-
Note that accounting for the field entropy of a finite sys-action energy that is shared between the two subsystems.

tem, that is stored over all space, is important regarding exthis agrees with the fact that E¢L5) accounts for energy

pressions of probability density of fluctuations in the prox-that pertains to a system, or subsystem, which is identified as

imity of equilibrium. For further details, see the recent work its exclusive source.

on fluctuations in the presence of the field by Dumitru and Equation(27) can be used to definfor subsystem J

Boer|[6]. intensive, e.g., per unit volume, entropy variables as follows:
The analysis presented hitherto applies also to electric po-
larization, once the magnetic variablBs H, and u are re- SM1=S1+ ESm12= Stzi + St1o+ SSM12s (29)

placed byD, E, ande, which denote electric displacement,
electric field intensity, and permittivity, respectively. In what , ,
follows the entropy of a composite system is consideredVNere&Sm1=Su1/V, Sy1=Su1/V, Su12=Su12/V, and sub-
Hitherto, the analysis was restricted to single systems. NexCriptsi and o denote the part ofy,; stored within, and
the case of composite systems, comprising interacting suiutside, the boundaries of the system, respectively.
systems, is considered. Equation(29) shows that unless the contributions from
A composite system comprises subsystems that are chdfteractions and field entropy stored outside the system
acterized by their dimensions and position in space. Twdoundaries vanish, the intensive entropy density differs from
states are defined with respect to the extent of interactiof’®€ conventional form of classical thermodynamics. It is only
between the subsystems. In the first state, the subsystems Y8€N Sy 1,=Su12=0 that sy1=Sy; =Sy conforms with
placed far apart so as to warrant the assumption that thelassical nonfield thermodynamics. As ER9) is general in
mutual interactions vanish. In this state the energy of eachature, it applies to the entropy of systems, or subsystems, in
system is defined as its own, or self-energy. The second stagéates of interaction or noninteraction.sff;;,=0, thensy,
is characterized by the existence of significant interactions=Sy,=Sy1; +Su1, and the entropy density, e.g., per unit
between part or all of the subsystems. In this category, sub/olume V of the system, includes a contribution from the
systems that are in physical contact, and share commdield outside its physical boundaries. This is a unique prop-
boundaries, are included. Let the field entropy of a compositerty of the field entropy that does not exist in its nonfield
system, comprising two subsystems, in the first and seconcbounterpart.
state, be denoted b, andS,,, respectively,

SUMMARY AND CONCLUSIONS
Sy=Su1+Su2. (24 .
The entropy in the ternT dS that stands for the heat
delivered to the system across its boundaries is the nonfield
component of the total entropy. The definition 8fas the

where subscripts 1 and 2 indicate that the variable pertains total entropy, inT dS, contradicts the meaning afQ as
the respective subsystems, and the prime refers to the firgiven by the second law, and violates the first law. As adia-

Sv=Sm1t Swu2, (25

state. batic magnetization relates to a process whereby a system is
The interaction entropyS,,,, prevailing in the second magnetized while being thermally insulated, it must be de-
state is defined by fined as a process at fix&and not at fixed total entrop$.
. Contrary to the case where polarization is absent, quasistatic
Sw12=Su~ Su (26) adiabatic polarization is not isentropic with respect to the

where use was made of the fact that in the first “primed” total entropyS. The self-entropy of a polarized system can

state, the interaction between subsystems 1 and 2 vanisheB€ Stored inside as well as outside its physical boundaries.
In the second state, the interaction energy is shared bd-NiS entropy is a consequence of the field generated by the

tween subsystems 1 and 2. Hence, contents of the system, irrespective of its storage being
within or outside the system.

Sm1=Si1+ 3Sm12=Su1+3(Su—Sh). (27 The entropy of a system consists of self-entropy and half

the interaction entropy with other systems. Consequently, the

Sv2=St2F 3Sm21=St2+ 3 (Su—Si). (28)  entropy density, e.g., per unit volume of the systems, com-

prises self and interaction parts, which account for the effect

whereSy;1,= Sy21 - of the field energy stored beyond the system boundaries. This

The variablesS;;;, Sy2, Su, andSy, can be evaluated, is a unique property, which is imparted to polarizable sys-
in conjunction with Eq(15), once the field equations in the tems by the presence of polarization fields.
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